

Human-Centred Learning Analytics and Al in Education Reimagining Reflection in Education

Roberto Martinez-Maldonado

Roberto.MartinezMaldonado.net twitter: @RobertoResearch

Contact: Roberto Martinez-Maldonado Roberto.MartinezMaldonado@monash.edu X: @RobertoResearch www.monash.edu/colam

CENTRE FOR LEARNING ANALYTICS MONASH

EOPLE PROJECTS PUBLICATIONS NEWS EVENTS COLLABORATION

Paving the path for better education

From informing policies to improving learning spaces, we're using technology in diverse ways to expand our understanding of human learning – and enhance education for all.

Centre for Learning Analytics at Monash (CoLAM)

Our centre is a world-leader in learning analytics – and a globallyrenowned hub for educating students and professionals in this area. Gathering top expertise from around the world, we're developing our field while making a real-world impact.

Watch the video

Explore our projects

Meet our people

Read our publications

CoLAM Members

- 12 faculty members
- Four teaching fellows
- Six research fellows
- Five adjunct staff
- Four professional staff
- 30+ full-time PhD students
- 25+ affiliates at Monash
- Largest in the world in LA

FOCUS AREAS

CAPABILITIES

Analytics and self-regulated / collaborative learning	Human-centred learning analytics	Analytics and AI for assessment and feedback	Learning sciences Learning analytics Design Data science and Al
Human-AI interaction	Workplace learning and practice analytics	Multimodal learning analytics	

PARTNERS

CURRENT FUNDERS

OUR TEAM

A/Prof Roberto Martinez-M.

Centre of Learning Analytics **Deputy-Director** Monash University

Prof Dragan Gasevic Centre of Learning Analytics Director Monash University

Gloria Fernandez-Nieto

Research Fellow Monash University

Lixian (Jimmie) Yan

Research Fellow Monash University

Riordan Alfredo

PhD Student

Monash University

Stanislav Podzniakov

Research Fellow

University of Queensland

Yueqiao (Ariel) Jin

PhD Student

Monash University

Research Fellow

Monash University

PhD Student Monash University

Dr Yi-Shan Tsai

Senior Lecturer Monash University

Dr Vanessa Echeverria

Lecturer RMIT

A (**REBOOTED**) HUMAN-CENTRED LEARNING ANALYTICS SITUATION

LEARNING ANALYTICS

Within dashboards, visualizations are frequently used to provide a visual representation of education data to support self-regulated learning, reflection, pedagogical interventions and teacher-student dialogues.

ONLINE DASHBOARDS

Daryl Zandvliet thesis work. ictinstitute.nl/learning-analytics-research

TO ADDRESS LEARNING, **Dashboards are becoming** ...

Paulsen, L., & Lindsay, E. (2024). Learning analytics dashboards are increasingly becoming about learning and not just analytics-A systematic review. *Education and Information Technologies*, 1-30.

TO ADDRESS LEARNING, Dashboards are becoming more complex

prediction, recommendations and feedback. 25 Number of publication 20 15 **Monitoring** 10 Awareness Comparison 5 0 2017 2018 2021 2013 2014 2015 2016 2019 2020 2022 Publication year Comparison Monitoring Prediction Awareness Reflection Recommendation Feedback GoalSetting

Paulsen, L., & Lindsay, E. (2024). Learning analytics dashboards are increasingly becoming about learning and not just analytics-A systematic review. *Education and Information Technologies*, 1-30.

Multiple objectives including

Dashboards Are becoming more multimodal

Education and Information Technologies https://doi.org/10.1007/s10639-023-12401-4

Learning analytics dashboards are increasingly becoming about learning and not just analytics - A systematic review

r 2023

Lucas Paulsen¹ · Euan Lindsay²

Our results imply that external data sources are needed in order to support diagnostic and prescriptive analytics, the types of analytics that we argue are needed in order to support students' learning through affordances such as feedback, reflection and recommendation. Dashboards limited to LMS data are by that nature also restricted in what they can present to students, and to what degree they can understand and support students' learning processes.

nerging themes in the design and implementaics dashboards in higher education. Learning focusing too much on the analytics, and not s then guided by an interest in whether these s-driven or if they have become pedagogically identified themes of technological maturity, data sources, and analytical levels over pubfies an emerging trajectory towards student-

focused dashboards. These dashboards are informed by theory-oriented frameworks, designed to incorporate affordances that supporting student learning, and realised through integration of more than just activity data from learning management systems – allowing the dashboards to better support students' learnings processes. Based on this emerging trajectory, the review provides a series of design recommendations for student-focused dashboards that are connected to learning sciences as well as analytics.

Keywords Learning analytics \cdot Dashboards \cdot Systematic review \cdot Trajectories \cdot Higher education

Paulsen, L., & Lindsay, E. (2024). Learning analytics dashboards are increasingly becoming about learning and not just analytics-A systematic review. *Education and Information Technologies*, 1-30.

DASHBOARDS ARE NOT DELIVERING THEIR PROMISES

Students find it difficult to interpret/act on data to improve learning (Bodily & Verbert, **2017**; Jivet et al., **2018**; Matcha et al., **2019**; Valle et al., **2021**)

.... and the same applies to teachers (Mangaroska & Giannakos, 2018).

.... most do not address concepts of justice, equity, diversity and inclusion (Williamson & Kizilcec, 2023)

Bodily, & Verbert (2017). Trends and issues in student-facing learning analytics reporting systems research. LAK'17 Jivet, Scheffel, Specht & Drachsler (2018). License to evaluate: Preparing learning analytics dashboards for educational practice. In LAK'18 Matcha, Gasevic, & Pardo (2019). A Systematic Review of Empirical Studies on Learning Analytics Dashboards: A Self-Regulated Learning Perspective. IEE TLT Valle, Antonenko, Dawson & Huggins-Manley (2021). Staying on target: A systematic literature review on learner-facing learning analytics dashboards. BJET Williamson & Kizilcec, R. (2023). A review of learning analytics dashboard research in higher education: Implications for justice, equity, diversity, and inclusion. LAK'22. Mangaroska & Giannakos (2018). Learning analytics for learning design: A systematic literature review of analytics-driven design to enhance learning. IEEE TLT

DESIGN in learning analytics

Gašević, D., Kovanović, V., & Joksimović, S. (2017). Piecing the learning analytics puzzle: a consolidated model of a field of research and practice. *Learning: Research and Practice, 3*(1).

THE ROLE OF DESIGN in learning analytics

Consolidated model of learning analytics

We posit that the foundational principles of learning analytics can be grouped around three mutually connected dimensions – theory, design, and data science. We also posit that the most effective results in and with highest validity for research and practice can be achieved only once the principles of all three dimensions are considered. The consolidated model (Figure 1) does not exclude the existing models and frameworks of learning analytics, but rather complements them.

Gašević, D., Kovanović, V., & Joksimović, S. (2017). Piecing the learning analytics puzzle: a consolidated model of a field of research and practice. *Learning: Research and Practice, 3*(1).

THE PROBLEM OF 'DESIGNING FOR' INSTEAD OF DESIGNING WITH

THIS GROUP OF OLD MEN

is debating the future of women's health care.

Human-Centred Learning Analytics

How is this process done?

LEARNING ANALYTICS?

A balanced working definition of Human-Centred Learning Analytics (HCLA) can be:

the subfield of Learning Analytics focused on developing trustworthy, reliable systems that augment and support the capabilities of educational stakeholders, aligning with their intentions, preferences, interests, and values.

Source: Martinez-Maldonado, R. (2023). Human-centred learning analytics: Four challenges in realising the potential. *Learning Letters*, *1*, 6. https://doi.org/10.59453/FIZJ7007

Human-Centredness Learning Analytics

DESIGN PHASES IN LEARNING ANALYTICS

Prieto-Alvarez, C. G., Martinez-Maldonado, R., and Anderson, T. (2018). Co-designing learning analytics tools with learners. In J. M. Lodge, J. C. Horvath, and L. Corrin (Eds.), Learning Analytics in the Classroom.

DESIGN PHASES IN LEARNING ANALYTICS

Prieto-Alvarez, C. G., Martinez-Maldonado, R., and Anderson, T. (2018). Co-designing learning analytics tools with learners. In J. M. Lodge, J. C. Horvath, and L. Corrin (Eds.), Learning Analytics in the Classroom.

DESIGN THINKING IN LEARNING ANALYTICS

Prieto-Alvarez, C. G., Martinez-Maldonado, R., and Anderson, T. (2018). Co-designing learning analytics tools with learners. In J. M. Lodge, J. C. Horvath, and L. Corrin (Eds.), Learning Analytics in the Classroom.

USING CARD SORTING AND OTHER GENERATIVE TOOLS

Question posed to pre-service teachers: "What aspects of the classroom or the learning activity happening in the classroom you would like to make more visible?"

Prestigiacomo, R., et al.. (2020, March). Learning-centred translucence: An approach to understand how teachers talk about classroom data. In *LAK'20*

ADAPTING DESIGN TOOLS SUCH AS USER JOURNEYS

A three-phase process for crafting Learner-Data Journey maps and using them as communication tools to involve other stakeholders in the co-design of a data-intensive educational tools.

Understand

Prieto-Alvarez, C. G., Martinez-Maldonado, R., & Shum, S. B. (2018). Mapping learner-data journeys: Evolution of a visual co-design tool. In *Proceedings of the Australian Conference on Computer-human Interaction*.

WHAT TOOLS CAN WE USE FOR OTHER TASKS?

Martin and Hanington (2012)

Contents & design phases **0260**

6	
8	00000
10	00000
12	00000
14	00000
16	00000
	00000
	00886
22	00000
24	00000
26	00886
28	00000
	00000
32	00000
34	00886
	000000
	00000
	00000
42	00886
	00000
	00000
	00000
	008306
	00000
	00000
	00800
58	00000

27. Design Ethnography60	00000
28. Design Workshops62	02846
29. Desirability Testing	00846
30. Diary Studies	02636
31. Directed Storytelling	00666
32. Elito Method70	00896
33. Ergonomic Analysis72	00846
34. Evaluative Research	00846
35. Evidence-based Design76	00846
36. Experience Prototyping78	00886
37. Experience Sampling Method80	02846
38. Experiments82	00846
39. Exploratory Research	02846
40. Eyetracking	000000
41. Flexible Modeling	00886
42. Fly-on-the-Wall Observation	02846
43. Focus Groups92	000000
44. Generative Research	00806
45. Graffiti Walls	02846
46. Heuristic Evaluation	00896
47. Image Boards100	02646
48. Interviews102	02846
49. KJ Technique104	00646
50. Kano Analysis106	00896
51. Key Performance Indicators108	00846
52. Laddering	00666
53. Literature Reviews112	000000

RAPID PROTOTYPING

Low and high fidelity prototyping with teachers and students.

Prieto-Alvarez, C. G., Martinez-Maldonado, R., & Shum, S. B. (2018). Mapping learner-data journeys: Evolution of a visual co-design tool. In *Proceedings of the Australian Conference on Computer-human Interaction*.

CHALLENGE #1

The challenge: The educational stakeholders participating in a HCLA project may be highly motivated, exceptional individuals, such as high-achieving students or innovative teachers.

This could result in a skewed representation in the participants of the LA design process.

CHALLENGE #1

Potential strategies:

Designing solutions for underrepresented users can often derive breakthroughs that would benefit everyone (Nielsen, 2013)

Nielsen, J. (2013). Usability for Senior Citizens: Improved, But Still Lacking. En Nielsen Norman Group. Retrieved from: <u>https://www.nngroup.com/articles/usability-seniors-</u> <u>improvements</u>. Make use of inclusive design toolkits (e.g., the Cambridge Inclusive Design Kit) http://www.inclusivedesigntoolkit.com/t ools_guidelines/

THERE HAS BEEN LITTLE STAKEHOLDER INVOLVEMENT IN THE IDEATION AND MONITORING PHASES OF THE DESIGN

N=108 papers

Stakeholder Involvement by Design Phases

Stakeholders influenced the design (active) Stakeholders only participated in study (passive)

Alfredo et al. (2024) Human-Centred Learning Analytics and AI in Education: a Systematic Literature Review. (under review)

5-YEAR HCLA, MULTIMODAL LEARNING ANALYTICS CASE STUDY

"Multimodal data is used in recognition of the plurality of ways that students may demonstrate or communicate knowledge, interests and intent"

What **SENSORS** do we use?

Movement and speech interaction workflows

Localisation sensors

Audio data

LLM-powered conversation analytics

AUDIO DATA STREAMS

TRANSCRIPTS

Speaker 1 (00:12):

So this is Ani. So Ani is a 49-year-old female, four days post his hysterectomy with fibro amani's, AWAI for discharge home. She's called her husband, wasn't able to get hold of him. Mm-Hmm. <affirmative>. So got a past history of Crohn's, um, being stable this shift. Vital signs with their normal limits, just waiting for some discharge instructions with an outpatient appointment and a script for analgesia. Three postop from an

Speaker 2 (00:46):

Ectomy. It's alright, mom. Mom, it's all right. It's, it's alright. Peritonitis. It's all right. It's alright. Mum. She's been on. Excuse me. Excuse me. Can someone come and look at my mom? She can't breathe. Can

TEAMWORK CODES

Task allocation

Agreement

Information sharing

Situation assessment

Using LLMs, we code nurses' verbal content into team's communication behaviours

Using LLMs, we code nurses' verbal content into team's communication behaviours

Automated Video Analysis

Using computer vision models, we infer objects and students' location

The teachers **co-created a web orchestration application** containing graphs and their own annotations

Teachers use the system to annotate critical moments and guide a conversation with their students about team dynamics

ANNOTATIONS DURING THE CLINICAL SIMULATION

TEAMWORK ANALYTICS DURING THE BRIEF

Using GenAl chatbots To guide students' post-hoc reflection

SimVision

← Log Out

Seeking and MEMORISING CLARIFICATIONS

Who did I **communicate** with?

Ø

To determine who you communicated with, **please provide the name or role** you had during the simulation.

Ð

Seeking and MEMORISING CLARIFICATIONS

niversity

To determine who you communicated with, **please provide the name or role** you had during the simulation.

Ð

RESPONSE

Personalised

Who did I **communicate** with?

To determine who you communicated with, **please provide the name or role** you had during the simulation.

Þ

Þ

primary nurse 2

As Primary Nurse 2, you communicated with the doctor, Primary Nurse 1, both Secondary Nurses, and the patients. This is indicated by the **lines connecting** to your icon in the **Communication Network**.

Where did I spend most time?

The VIZCHAT COMPONENTS

niversitv

Who did I communicate with?

To determine who you communicated with, please provide the name or role you had during the simulation.

primary nurse 2

As Primary Nurse 2, you communicated with the doctor, Primary Nurse 1, both Secondary Nurses, and the patients. This is indicated by the lines connecting to your icon in the Communication Network.

Where did I spend most time?

Primary Nurse 2 spent most time around Bed 4, indicated by the high concentration of blue hexagons in that area of the Ward Map.

Using Al summary To guide students' post-hoc reflection

SimVision

← Log Out

Insights

The provided dashboard offers insights into several key constructs:

- Patient Management:
 - Prioritization: The team prioritized working individually on tasks for Ruth (47%) and working together on Ruth's tasks (24%), indicating that Ruth's care was a central focus, consistent with the learning objectives.
 - Ward Map: The team was predominantly positioned around Bed 4 (Ruth), with high speech activity, reinforcing the prioritization of Ruth's care.
- Contribution to Teamwork:
 - Communication Network: Primary Nurse 1 (PN1) and Primary Nurse 2 (PN2) had the most extensive communication, indicating active roles in team coordination.
 - Communication Behaviour: Task allocation and information sharing were prominent, showing collaborative efforts in distributing tasks and managing patient care.
- Communication Strategies:
 - Communication Network: The thick lines between PN1, SN1, and SN2 highlight significant communication, suggesting a well-connected team structure. The network's design reveals clear hierarchies and interaction patterns essential for effective teamwork.
 - Communication Behaviours: The balanced cooccurrence of acknowledging, sharing information, and escalation indicates a systematic approach to managing both routine tasks and critical situations.

Using Data Comics To present the data to students

Using Data Comics To present the data to students

Moving to the Classroom to present the data about co-teaching

Moving to the Classroom to present the data about co-teaching

Moving to the Classroom to present the data to students

descriptive data

It may be quite challenging (challenge #2) to put yourself in the shoes of others

...designers often commonly cannot truly understand what teachers and students really need

THERE HAS BEEN LITTLE ACTIVE INVOLVEMENT OF STUDENTS COMPARED TO TEACHERS

Stakeholder Involvement by Education Roles

Alfredo et al. (2024) Human-Centred Learning Analytics and AI in Education: a Systematic Literature Review. (under review)

Many current LA tools and dashboards require a level of data savviness

From a HCD perspective, it is more sensible to change the tool to suit teachers' and learners' needs rather than training them to suit the LA tools.

TEACHERS AND STUDENTS SHOULD BE CONSIDERED NON-DATA EXPERTS

HE STEM students find it hard to interpret charts and data visualisations... "Instructors of undergraduate courses should not expect students to come into courses with high proficiency for understanding, interpreting, and creating data visualizations" (Maltese et al., 2015)

Maltese, Adam V, Joseph A Harsh, and Dubravka Svetina. (2015). Data visualization literacy: Investigating data interpretation along the novice—expert continuum. *Journal of College Science Teaching*, 45(1).

Challenge #3

Non-data experts are unlikely to be aware of the implications of AI design choices

This suggests the need for new methods particularly tailored to engage with teachers and students in the design of data-intensive and pedagogical meaningful LA innovations.

INTERACTIONS

HOME CURRENT ISSUE ARCHIVE BLOGS SUBMISSIONS ABOUT

HOME | BLOG | WHY CODESIGNING AI IS DIFFERENT AND DIFFICULT

BLOGS

WHY CODESIGNING AI IS DIFFERENT AND DIFFICULT

Authors: Malak Sadek, Rafael Calvo, Céline Mougenot Posted: Tue, June 27, 2023 - 12:04:00

PREV ISSUE NEXTISSUE VIEW IN DIGITAL LIBRARY DIGITAL EDITION FORMAT VIEW IN PDF FORMAT

It is estimated that 98 percent of the population are novices with regard to technology (excluding extremes such as infants) [1]. It is this 98 percent, however, that form the main chunk of users and stakeholders affected by AI-based systems. It then makes sense that members of this segment of the population should be involved in designing these systems beyond just the small, homogenous set of experts currently involved.

There have been countless calls for the introduction of a transdisciplinary, participatory design process for AI/ML systems [2,3]. Such a collaborative design (codesign) process has been heralded as especially useful in aiding explainability and transparency [4], embedding values into AI-based systems [5], providing accountability, and mitigating downstream harms arising from several cascading biases and limitations [6]. There have also been calls for collaboration within the entire AI pipeline, including in data creation and selection, instead of having designers at the front end of the process and engineers at the back end [7]. In fact, it has been said that the only way to combat existing structural and

SIGN IN

SEARCH

Ideation and communication

- It is difficult for technical experts to explain to users and nontechnical experts an Al's behavior, what counts as AI, and what it can/cannot do.
- It is also difficult for designers to communicate AI design ideas, interactions, and appropriate use cases/user stories to technical experts, codesign partners, and users. It is also challenging to imagine ways to purposefully use AI to solve a given problem, creating an overall "capability uncertainty" [10].
- It is challenging for designers and developers to understand how to collaborate and co-ideate without a common language or shared boundary objects, especially when designers join late in the project.

back end [7]. In fact, it has been said that the only way to combat existing structural and

The challenge #4:

Power dynamics among researchers, designers, users, and other stakeholders can significantly influence decisionmaking in the design process.

For instance, it could lead to a situation where researchers, designers, or those stakeholders in positions of power, end up making most, if not all, decisions.

AN EMANCIPATORY PERSPECTIVE FOR LEARNING ANALYTICS

"Learners are not to be seen as passive beneficiaries of a superior control entity. With respect to software adaptations, if Learning Analytics has to play a role, it should be limited to one of awareness and recommendation."

Tchounikine, Pierre. (2019). Learners' agency and CSCL technologies: towards an emancipatory perspective. *International Journal of Computer-Supported Collaborative Learning*, 14(2).

THE CRITICAL CONCEPTS OF EXPERTISE AND LIVED EXPERIENCE

HCD acknowledges lived experience as a credible form of expertise.

Lived experience refers to a person's experiences, decisions, and knowledge gained from these experiences (Jones, 2013).

A key tenet of co-design is that each stakeholder can contribute with their own expertise and, in doing so, there are higher possibilities to design something that addresses authentic needs (McKercher, 2020).

Jones, P. (2013). *Design for care: Innovating healthcare experience*: Rosenfeld Media. McKercher, K. A. (2020). Beyond sticky notes. *Doing co-design for Real: Mindsets, Methods, and Movements, 1st Edn. Sydney, NSW: Beyond Sticky Notes*.

Al with a Human Touch: within Learning Analytics

Key take aways

- Al is here to stay, we need to make sure WE are also here to stay
- There is a big difference between **designing with** rather than **designing for**
- Human-centredness is critical if we don't want to lose our agency
- Human-centred AI in Education has some unique challenges (casual use, expertise, skewed participation)

DO YOU HAVE ANY QUESTIONS?

E AVNK

MONASH University

CONTACT: Roberto Martinez-Maldonado Roberto.MartinezMaldonado.net Twitter/X: @RobertoResearch

Our Promise to Youth

Australian Government

 Australian Research Council

Open mic

HCD acknowledges lived experience as a credible form of expertise.

Lived experience refers to a person's experiences, decisions, and knowledge gained from these experiences (Jones, 2013).

A key tenet of co-design is that each stakeholder can contribute with their own expertise and, in doing so, there are higher possibilities to design something that addresses authentic needs (McKercher, 2020).

Jones, P. (2013). Design for care: Innovating healthcare experience: Rosenfeld Media. McKercher, K. A. (2020). Beyond sticky notes. Doing co-design for Real: Mindsets, Methods, and Movements, 1st Edn. Sydney, NSW: Beyond Sticky Notes.

THE ROLE OF THE HCD FACILITATOR

BUT IS IT CO-DESIGN? TOOL by KA McKercher.

a. Are people with lived experience, professionals and others involved (e.g. policy-makers, architects) working together?

This could be through researching, sharing and discussing insights, developing ideas, building prototypes or implementing new concepts

A Yes, people with different experiences are working together	Not yet, we're warming up to people being in the same room (for example, trust is low)	c No, we learn from people with lived experience
 No, we have seperate advisory groups (e.g. youth advisors) 	E I don't know, show me the next question	

BUT IS IT CO-DESIGN? TOOL by KA McKercher.

" Learning from people (not with them) usually isn't co-design

To get closer to co-design, you might involve people with lived experience in:

- Reviewing data
- Gathering stories
- Developing insights
- Identifying and making ideas
- Testing ideas
- Making decisions

Next question press Enter 4

https://g8mvf9i2x72.typeform.com/to/K6PpU2xZ

SUPPORTING THE DESIGN PROCESS THROUGHT DESIGN-BASED RESEARCH CYCLES

EMBEDDING DESIGN THINKING INTO DBR CYCLES

Prieto Alvarez, Carlos. Engaging stakeholders in the learning analytics design process. PhD Thesis
WHAT TOOLS CAN WE USE FOR EMPATHISING AND DEFINING

Giacomin, J. (2014)

Capture of Needs, Desires and Meanings

Verbally based

- Ethnographic interviews
- Questionnaires
- Day-in-the-life analysis
- Activity analysis
- Cognitive task analysis
- The five whys
- Conceptual landscape
- Word-concept association
- Think aloud analysis
- Metaphor elicitation
- Be your customer
- Customer journey
- Extreme users
- Personas
- Scenarios
- Brainstorming
- Contextual inquiry

Non-verbally based

- Game playing
- Cultural probes
- Visual journals
- Error analysis
- Fly-on-the-wall observation
- Customer shadowing
- Body language analysis
- Facial coding analysis
- Physiological measures
- Electroencephalograms

Understand

WHAT TOOLS CAN WE USE FOR **OTHER TASKS?**

Martin and Hanington (2012)

INTRODUCTION	6	
01. A/B Testing	8	00000
02. AEIOU	10	00000
03. Affinity Diagramming	12	00000
04. Artifact Analysis	14	00000
05. Automated Remote Research	16	00000
06. Behavioral Mapping	18	00000
07. Bodystorming		00800
08. Brainstorm Graphic Organizers	22	00000
09. Business Origami	24	00000
10. Card Sorting	26	00000
11. Case Studies		00000
12. Cognitive Mapping		00000
13. Cognitive Walkthrough	32	00000
14. Collage		00886
15. Competitive Testing		000000
16. Concept Mapping		00000
17. Content Analysis	40	00000
18. Content Inventory & Audit	42	000000
19. Contextual Design		00000
20. Contextual Inquiry		00000
21. Creative Toolkits		00000
22. Critical Incident Technique		000000
23. Crowdsourcing		00000
24. Cultural Probes		00000
25. Customer Experience Audit		008306
26. Design Charette		00000

27. Design Ethnography60	02846
28. Design Workshops	00846
29. Desirability Testing	00846
30. Diary Studies	02636
31. Directed Storytelling	00000
32. Elito Method70	00806
33. Ergonomic Analysis	00896
34. Evaluative Research	00646
35. Evidence-based Design76	00846
36. Experience Prototyping78	00886
37. Experience Sampling Method80	02846
38. Experiments	00846
39. Exploratory Research	00000
40. Eyetracking	00896
41. Flexible Modeling	00806
42. Fly-on-the-Wall Observation	00000
43. Focus Groups92	00806
44. Generative Research	00800
45. Graffiti Walls	00886
46. Heuristic Evaluation	00886
47. Image Boards100	02836
48. Interviews102	02845
49. KJ Technique104	000000
50. Kano Analysis106	000000
51. Key Performance Indicators	00000
52. Laddering 110	02845
53. Literature Reviews112	000000

RESEARCH-ARTICLE

У in 🤨 f 🗳

Learning Analytics and Stakeholder Inclusion: What do We Mean When We Say "Human-Centered"?

Authors: (2) Charles Lang, (2) Laura Davis Authors Info & Claims

LAK2023: LAK23: 13th International Learn] 417 • https://doi.org/10.1145/3576050.35

Human-centeredness seems to rest on the idea that stakeholders have access to knowledge that researchers and designers do not, and access to this knowledge will create better research and design products. This may be true, but there is no reason why it must be true, or even true a majority of the time. Especially within a field such as learning analytics where tools, data and people are interacting in new ways. It seems more likely that such a context would be unfamiliar to all stakeholders, from researchers to users.

WHY HUMAN-CENTRED DESIGN?

"Eric Von Hippel of the MIT Business School has noted that "70% to 80% of new product development that fails does so not for lack of advanced technology, but because of a **failure to understand users' needs**."

Joseph Giacomin, 2012 seminar

Von Hippel, E. 2007, An emerging hotbed of user-centered innovation, Breakthrough ideas for 2007, Harvard Business Review, Article R0702A, February

DON NORMAN'S ESSAY ON

Human-Centered Design Considered Harmful

By Donald A. Norman > Nielsen Norman Group > norman@nngroup.com

Human-centered design has become such a dominant theme in design that it is now accepted by interface and application designers automatically, without thought, let alone criticism. That's a dangerous state—when things are treated as accepted wisdom. The purpose of this essay is to provoke thought, discussion, and reconsideration of some of the fundamental principles of human-centered design. These principles, I suggest, can be helpful, misleading, or wrong. At times, they might even be harmful. Activity-centered design might be superior. Most items in the world have been designed without the benefit of user studies and the methods of human-centered design. Yet they do quite well. Moreover, these include some of the most successful objects of our modern, technological worlds. Consider two representative examples:

The Automobile. People all over the world learn to drive quite successfully with roughly the same configuration of controls. There were no systematic studies of users. Rather, early automobiles tried a variety of configurations, initially copying the seat-

SOURCE: https://arl.human.cornell.edu/linked%20docs/HCD%20considred%20Harmful.pdf

HUMAN-CENTRED IS NOT THE SAME AS HUMAN CENTRIC

Human centredness includes all the human factors, social factors and technology factors interact together under the human activity umbrella.

Winograd and Woods. 1997. *The challenge of human-centered design*. Human-centered systems: information, interactivity, and intelligence.

USING ACTIVITY-CENTRED DESIGN

Muñoz-Cristóbal, J. A., Hernández-Leo, D., Carvalho, L., Martinez-Maldonado, R., Thompson, K., Wardak, D., & Goodyear, P. (2018). 4FAD: A framework for mapping the evolution of artefacts in the learning design process. Australasian Journal of Educational Technology, 34(2).

Human-Centred Learning Analytics

INDUCTIVE STEP WITH TEACHERS

Stage 3: theory-driven deductive mapping

DEDUCTIVE STEP: FILLING THE GAPS USING THEORY

THE HUMAN-CENTRED DESIGN

Sanders, E. B. N., & Stappers, P. J. (2008). Co-creation and the new landscapes of design. Co-design, 4(1), 5-18.

THE HUMAN-CENTRED DESIGN LANDSCAPE led by design generative critical design design research (probes) génerative design , tools / and emotion user-centered design user as user participatory contextual partner as design inquiry usability testing subject research lead-user innovation/ "Scandinavian" human factors applied and ethnography ergonomics led by research

Sanders, E. B. N., & Stappers, P. J. (2008). Co-creation and the new landscapes of design. Co-design, 4(1), 5-18.

THE HUMAN-CENTRED DESIGN

Sanders, E. B. N., & Stappers, P. J. (2008). Co-creation and the new landscapes of design. Co-design, 4(1), 5-18.

THE HUMAN-CENTRED DESIGN

Sanders, E. B. N., & Stappers, P. J. (2008). Co-creation and the new landscapes of design. Co-design, 4(1), 5-18.

THE ORLA FRAMEWORK

Prieto, L. P., Rodríguez-Triana, M. J., Martínez-Maldonado, R., Dimitriadis, Y., & Gašević, D. (2019). Orchestrating learning analytics (OrLA): Supporting inter-stakeholder communication about adoption of learning analytics at the classroom level. *Australasian Journal of Educational Technology*.

THE LATUX WORKFLOW

Martinez-Maldonado, R., Pardo, A., Mirriahi, N., Yacef, K., Kay, J. and Clayphan, A. (2016) LATUX: an Iterative Workflow for Designing, Validating and Deploying Learning Analytics Visualisations. International Journal on Learning Analytics, JLA, 2(3)

LEARNING ANALYTICS ARE **ABOUT LEARNERS AND EDUCATORS**

Chapter 1: Theory and Learning Analytics

Simon Knight, Simon Buckingham Shum

Connected Intelligence Centre, University of Technology Sydney, Australia DOI: 10.18608/hla17.001

ABSTRACT

The challenge of understanding how theory and analytics relate is to move "from clicks to constructs" in a principled way. Learning analytics are a specific incarnation of the bigger shift to an algorithmically pervaded society, and their wider impact on education needs careful consideration. In this chapter, we argue that by design - or else by accident - the use of a learning analytics tool is always aligned with assessment regimes, which are in turn grounded in epistemological assumptions and pedagogical practices. Fundamentally then, we argue that deploying a given learning analytics tool expresses a commitment to a particular educational worldview, designed to nurture particular kinds of learners. We outline some key provocations in the development of learning analytic techniques, key questions to draw out the purpose and assumptions built into learning analytics. We suggest that using "claims analysis" - analysis of the implicit or explicit stances taken in the design and deploying of technologies - is a productive human-centred method to address these key questions, and we offer some examples of the method applied to those provocations.

Keywords: Theory, assessment regime, claims analysis

In what has become a well-cited, popular article in Wired magazine, in the new era of petabyte-scale data and analytics. Anderson (2008) envisaged the death of theory, models, and the scientific method. No longer do we need to create theories about how the world works, because the data will tell us directly as we discern, in almost real time, the impacts of probes and changes we make.

This high profile article and somewhat extreme conclusion, along with others (see, for example, Mayer-Schönberger & Cukier, 2013), has, not surprisingly, attracted criticism (boyd & Crawford, 2011; Pietsch, 2014).

Educational researchers are one community interested in the application of "big data" approaches in the form of learning analytics. A critical question turns on exactly how theory could, or should shape research in this new paradigm. Equally, a critical view is needed on how the new tools of the trade enhance/constrain computationally modelled, or who does what with the theorizing by virtue of what they draw attention to, and what they ignore or downplay. Returning to our opening provocation from Anderson, the opposite conclusion is drawn by Wise and Shaffer (2015, p. 6):

What counts as a meaningful finding when the number of data points is so large that something will always be significant? [...] In sum, when working with big data, theory is actually more important, not less, in interpreting results and identifying meaningful, actionable results. For this reason we have offered Data Geology (Shaffer, 2011; Arastoopour et al., 2014) and Data Archeology (Wise, 2014) as more appropriate metaphors than Data Mining for thinking about how we sift through the new masses of data while attending to underlying conceptual relationships and the situational context.

Data-intensive methods are having, and will continue to have, a transformative impact on scientific inquiry (Hey, Tansley, & Tolle, 2009), with familiar "big science" examples including genetics, astronomy, and high energy physics. The BRCA2 gene, Red Dwarf stars, and the Higgs bosun do not hold strong views on being results. However, when people become aware that their behaviour is under surveillance, with potentially important consequences, they may choose to adapt or distort their behaviour to camouflage activity, or to game the system. Learning analytics researchers aiming to study learning using such tools must do so aware that they have adopted a particular set of lenses

Let us turn now to educators and learners. The potential of learning analytics is arguably far more significant than as an enabler of data-intensive educational research, exciting as this is. The new possibility is that educators and learners – the stakeholders who constitute the learning system studied for so long by researchers – are for the first time able to see their own processes and progress rendered in ways that until now were the preserve of researchers outside the system. Data gathering, analysis, interpretation, and even intervention (in the case of adaptive software) is no longer the preserve of the researcher, but shifts to embedded sociotechnical educational infrastructure. So, for educators and learners, the interest turns on the ability to gain insight in a timely manner that could improve outcomes.

Buckingham Shum. "Theory and learning analytics." Handbook of learning analytics (2017): 17-22.

SOME CURRENT HCLA LITERATURE AND RESOURCES

Special issue editorial

Buckingham Shum, S., Ferguson, R. and Martinez-Maldonado R. (2019). Human-Centred Learning Analytics. JLA.
SOLAR Webinar

□ Alyssa Wise. Designing Learning Analytics for Humans with Humans. LINK

SOME CURRENT HCLA LITERATURE AND RESOURCES

Special issue editorial

Buckingham Shum, S., Ferguson, R. and Martinez-Maldonado R. (2019). Human-Centred Learning Analytics. JLA.
SOLAR Webinar

□ Alyssa Wise. Designing Learning Analytics for Humans with Humans. LINK

Some key papers

- Dimitriadis, Y., Martínez-Maldonado, R., & Wiley, K. (2021). Human-Centered Design Principles for Actionable Learning Analytics. Book chapter
- Barreiros, C., Leitner, P., Ebner, M., Veas, E., & Lindstaedt, S. (2023). Students in Focus–Moving Towards Human-Centred Learning Analytics. Book chapter
- Ahn, J., Campos, F., Hays, M., & DiGiacomo, D. (2019). Designing in Context: Reaching beyond Usability in Learning Analytics Dashboard Design. *JLA*.
- Sarmiento, J. P., & Wise, A. F. (2022, March). Participatory and Co-Design of Learning Analytics: An Initial Review of the Literature. In LAK22.
- Dollinger, M., Liu, D., Arthars, N., & Lodge, J. (2019). Working Together in Learning Analytics Towards the Co-Creation of Value. Journal of Learning Analytics, 6(2), 10–26.
- Lawrence, L., ..., Rummel, N., & Aleven, V. (2022). Process to co-design AI-based orchestration tools to support dynamic transitions: Design narratives through Conjecture Mapping. In CSCL conference.
- Carlos G. Prieto-Alvarez et al., Co-designing learning analytics tools with learners. Book Chapter

British Journal of Educational Technology

Call for submissions for 2023 Special Section:

Human-Centred Design of Learning Analytics

Guest Editors

- Simon Buckingham Shum (University of Technology Sydney, Australia) Corresponding Guest Editor: <u>Simon.BuckinghamShum@uts.edu.au</u>
- Roberto Martínez-Maldonado (Monash University, Australia)
- Yannis Dimitriadis (Universidad de Valladolid, Spain)
- Patricia Santos (Universitat Pompeu Fabra, Spain)

Link to the call

British Journal of Educational Technology

Call for submissions for 2023 Special Section:

Topic questions:

- Can design processes from other disciplines, such as HCI, Co-Design and Participatory design, be unproblematically adopted for HCLA, or do they require adaptation?
- □ What are the **obstacles to the adoption** of HCLA design processes?
- □ How can the **voice of students** be taken more into account, besides the dominant thread of involving teachers? (a gap identified in the 2019 JLA special issue)
- □ What are the **lessons learnt from mid-to-long term HCLA studies** and how do they inform the aforementioned topic of adoption?
- To what extent can the design tools used in other areas be adopted or adapted for the purpose of LA design?
- Human-Al **complementarity**.

TALKS RELATED TO HCLA

Keynote

Keynote: Human-Centred Learning Tools: Empowering vs Analysing Students?

Speakers: Yvonne Rogers

Invited Panel

Session 4A-02: Invited Panel: How Universal Design for Learning can inform human-centered design in learning analytics

PAPERS RELATED TO HCLA @ LAK'23

Full

Session 8B-03: Learning Analytics and Stakeholder Inclusion: What do We Mean When We Say "Human Centered"?

Fri Mar 17, 2023 I:40 PM - 2:00 PM
 SEIR 198
 Speakers: Charles Lang

Practitioner

Session 8B-04: A peer in the loop: The human touch that analytics needs

Fri Mar 17, 2023 Sell 2:00 PM - 2:20 PM
 SEIR 198
 Speakers: Jenna Matthews

What **SENSORS** do we use?

